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War on Cancer at 40

m Cancer is not one thing

®= Not one cause, not one gene signature

m Cell reg. mechanisms vastly complex

m [reatments better, not good

® [ime to ask new evolutionary questions
+ How do cancers evolve?

+ Why didn't natural selection make us
less vulnerable?




What does evolution offer?

m Somatic evolution in tumors

m Social evolution theory

m Contributions of Darwinian medicine
m Bodies are not machines







Tumor evolution

= Genetic data

m [heoretical foundation

m Progress coming fast

m Practical implications

m Better theory still needed







Social Evolution Theory

= \We now understand how selection
shapes cooperation

= Powerful applications in cancer biology
= Much more to do!
= [he Synergistic duo!




Problems for Metazoans

m Connection

® Orientation

= Differentiation

m Prevent undifferentiation

m Control defectors

m Sequester reproductive from somatic

m Nourishment, excretion, coordination...
= SOCIAL problems!
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Research questions

= How to explain cooperation that controls
cell proliferation?

= How to explain social life of cells in a
tumor?

= \Why Isn’t cancer more common?







Darwinian Medicine

m [he field that applies the basic science
of evolutionary biology to the problems
of medicine and public health.

+ Analogous to genetic medicine
= Not a method of practice
= Not opposed to ordinary medicine
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Organizations advancing
evolutionary medicine

= NEScent
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Standards of Evidence

m Nesse: Ten Questions to ask about
Evolutionary Studies of Disease

¢ Evolutionary Applications, 2011




Four lines of work
Nesse & Stearns, 2008

1. Infection -«

— Established methods

2. Phylogenies < /

3. Evolutionary genetics

4. Why selection left our bodies vulnerable

The body is not a machine




PHYLOGENY

ADAPTIVE
SIGNFICANCE

Phylogeny of traits
Lactase persistence,
Ethanol sensitivity,
Blood types, HLA types
Skin color, Malaria resistance

Adaptive significance of traits
Aging, Bilirubin
Narrow birth canal,
Fever, Cough, Anxiety
Stress response

Human
gene

Tracing the phylogeny of

alleles that cause disease
Sickle cell disease
Cystic fibrosis, ApoE
Asthma vulnerability alleles

Possible adaptive significance of

alleles that cause disease
Sickle cell disease
Cystic fibrosis, ApoE
Asthma vulnerability alleles

Population genetics, Evolutionary genetics, Signals of selection

Pathogen
trait

Evolutionary history of
pathogen traits

Virulence, Antibiotic resistance, Ability to survive outside the
body, Biofilm formation

Possible adaptive significance of
pathogen traits

Virulence, Antibiotic resistance, Ability to survive outside the
body, Biofilm formation

Pathogen
gene

Tracing the phylogeny of
pathogen alleles

Tracing and predicting influenza subtypes, Source of food
poisoning, HIV evolution

Possible adaptive significance of
pathogen alleles

Alleles that influence virulence, Antibiotic resistance, Biofilm
formation, Spore formation

Cell lines

Cancer

Immune system cells

Nesse & Stearns, Evolutionary Applications, 2008




PHYLOGENY ADAPTIVE
SIGNFICANCE

Human
gene

Pathogen
trait

Pathogen
gene

Cter!;tlge Angiogenesis, independence, etc. Tumor traits
L Somatic mutations Functions of tumor mutations
genes

Nesse & Stearns, Evolutionary Applications, 2008




Q: Why has selection left us
vulnerable to cancer?

= Not why some people get cancer
= Not a description of mechanisms

= But why we all are vulnerable




The Old Answer: Natural selection is
just too weak to make the body better.

Self-Operating Napkin




The New Answer

= SiX reasons why natural selection
leaves bodies vulnerable to disease

= Ask EVOLUTIONARY questions




Six Reasons Why Diseases Exist

1. Mismatch: body in a novel environment
2. Competition with fast evolving organisms
3. Every trait is a trade-off

4. Constraints on natural selection

5. Organisms shaped for R/S, not health

6. Defenses and suffering




1. Mismatch

nanges since agriculture 10,000 y
nanges since industrialization 200 y
nanges since technology 50y




The ‘Epidemiological Transition’

Crohn's
Rheumatic disease
| fever

) Hepatitis A
Multiple ,

sclerosis

Tuberculosis

Type 1
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Breast Cancer

= 10x more common now
¢ Hormone exposure (Eaton, Strassmann)
+400+ cycles now, about 110 then
+ Night light exposure
+ Melatonin




More menstrual cycles now

Strassmann, 1999
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Modern sleep & light at night




Breast cancer in blind women

Verkasalo, 1999
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Ocular exposure of tumor-bearing rats to light during darkness.
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Increased inflammation?

m Lack of helminths/infection—>

m Decreased immune inhibitors -
® [ncreased inflammation (x10?) -
= Cell damage -

= Cancer




Other environmental novelties

m Hygiene - Childhood leukemia
m Toxins PCBs, etc. = Liver etc.
m Radiation exposure

m [obacco—> Lung




Research Questions

m Cancer rates in ancestral environment?

m Does lack of helminths increase
iInflammation that causes cancer?

= Can melatonin slow cancer progression?
= \What other novel factors are we missing?




2. Competition with other organisms

(Paul Ewald and others have explained)

= Pathogens that induce cell division
m [nsertion of genetic sequences
= Arms races and costly defenses

¢ Inflammation




Research questions

m Do some biomes - cancer?

= \What strategies lead some pathogens
to induce cell division?

= \Why aren’t mechanisms that repress
expression of viral sequences better?

m Does lack of infection change immune
responses In ways that cause cancer?




3. Every trait is a trade-off
Nothing in the body can be perfect

Colles fracture




Tradeoffs and cancer

m Costs of better cancer defenses
¢ Faster aging
+ More energy use
m [elomere length
¢ Aging vs. cancer susceptibility
= Inflammation intensity
¢ Infection protection vs. cancer




Antagonistic Pleiotropy
Blasco, 2005
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Research Questions

m \What disadvantages are associated
with decreased cancer vulnerability?

m Reproduction vs. cancer protection
= \Why are some tissues more vulnerable?




4. Constraints

= Mutations happen

+ Repair is limited—and can cause new
problems

m Cell cycle regulation is imperfect
= [umors evolve!




Research Question

= \What is cancer rate for those with good
genes in the natural environment?

® No specific cause for some cancers,
just stupid stochasticity

= \What tradeoffs limit cancer protection?




5. Health is not selection’s goal

m Selection maximizes reproduction,
NOT health, longevity, & happiness

m ? Reproductive cancers?
= Athena's talk: early advan—> later cost




6. Defenses

m Inflammation and other defenses
damage cells

m Defenses against cancer must be
extremely costly




Smoke Detector Principle

m Defenses expressed readily because
they are cheap compared to risk of

catastrophic failure E—
: ¥
¢ Still cause damage

m Defenses against cancer
¢ Big costs (to discover)

hit

Probability

internal response

correct reject
§_ § 32 Z false alarm

Internal response

Probability




Six Reasons Why Diseases Exist

1. Mismatch: body in a novel environment
2. Competition with fast evolving organisms
3. Every trait is a trade-off

4. Constraints on natural selection

5. Organisms shaped for R/S, not health

6. Defenses and suffering







The Body is NOT a
Machine

= Not designed
¢ Discrete parts with B— L
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Organic Complexity

m Machines: Discrete components with
specific functions

m Bodies: Distributed functions arising
from systems organically complex in
ways fundamentally different from
machines




Krebs Cycle

NAD + 2H =5 NADH,
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ﬁl SABiOSCienceS www.SABiosciences.com
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Apoptosis

Apoptotic stimuli
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The Body Is a
Tangled Bank

Organically
complex
mechanisms

are very different
from components
of machines




