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Natural Selection can explain cancer incidence at the
species level
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»The evolution of long-lived multicellular anirﬁegﬂrequired the selection for potent tumor suppressive
mechanisms.

» There is minimal selection against cancer beyond the age where most animals would already be dead
by other causes.

»Better tumor suppression would require additional energy in early life, which would come with a cost.
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High stem cell pool fithess is tumor suppressive
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DeGregori, J. (2011). Evolved tumor suppression:
why are we so good at not getting cancer? Cancer

Research, 71: 3739-3744.



Model for how vertebrates with large differences in somatic cell numbers and
lifespans similarly avoid cancer through reproductive years.
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Why does cancer increase with age?

Accumulation of oncogenic mutations.
Changes in cellular microenvironment.
Chronic inflammation.
Decreased immune surveillance.

Does reduction of cellular fithess lead to
selection for specific adaptive oncogenic
mutations?



Signaling in B-progenitors Declines with Age
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Bcr-Abl Becomes Adaptive in Aged Backgrounds by
Alleviating Aging-Associated Signaling Defects
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»Signaling defects in old B-progenitors
contribute to reduced fitness (as determined
using competitive transplantation assays.

»Bcr-Abl restores signaling, promoting
selection for Bcr-Abl expression.

» Selection for Ber-Abl within old B-progenitor
pools leads to increased leukemogenesis.

Henry et. al; PNAS; December 14, 2010 vol. 107 no. 50 21713-21718



What else underlies fithess defects in old
B-progenitors?



Id B-progenitors
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Anabolic and catabolic pathways decrease
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Aging is not a program
but programs can mediate aging

and aging can be deprogrammed.
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Old B Cell Progenitors Exhibit Metabolic Defects
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Model for Bcr-Abl Adaptation in an Aged Background
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A. Predominant Model
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B. Adaptive Oncogenesis Model

Aging

Accumulation of
oncogenic mutations

—> | Cancer

Decline in progenitor cell
fitness and tissue function

{

Increased selection
for adaptive
oncogenic mutations

V

Cancer




Previous Irradiation (IRF)
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Prior irradiation and HSC fitness

* Previously irradiated HSC exhibit maintenance defects that are
specific, reproducible, somatically heritable, and reversible.

 Evolved to deal with the occasionally damaged cell?

 “Programmed Mediocrity”?
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Hmmm....

« Could “programmed mediocrity” be a
mechanism to maintain tissue fitness in
youth, but which contributes to tissue

decline in old age?
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So why do kids get cancer?

1) Given expansion of progenitor populations, a mutation can more
easily become fixed even if not advantageous.

2) More recent evolution has substantially altered the human brain
and immune systems, and a low risk of childhood leukemias

affecting these tissues has been a tradeoff (although
advantages of a more developed brain and better immune

system outweighed the low leukemia risk).

3) There are dietary and genetic factors which correlate with reduced
folate and/or reduced dNTP synthesis, which may reduce
progenitor fitness, and thus may contribute to childhood
cancers.

4) Our immune systems did not evolve to deal with modern
conditions, but to conditions with more antigen and pathogen
exposures early in life. Thus, our hematopoietic systems are
not truly adapted to modern life.

5) Translocations common to childhood leukemias are more likely to
occur in fetal or childhood development.



