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Despite its major impact on the evolution of Life on Earth, the

transition to multicellularity remains poorly understood,

especially in terms of its genetic basis. The volvocine algae are

a group of closely related species that range in morphology

from unicellular individuals (Chlamydomonas) to

undifferentiated multicellular forms (Gonium) and complex

organisms with distinct developmental programs and one

(Pleodorina) or two (Volvox) specialized cell types. Modern

genetic approaches, complemented by the recent sequencing

of genomes from several key species, revealed that co-option

of existing genes and pathways is the primary driving force for

the evolution of multicellularity in this lineage. The initial

transition to undifferentiated multicellularity, as typified by the

extant Gonium, was driven primarily by the co-option of cell

cycle regulation. Further morphological and developmental

innovations in the lineage leading to Volvox resulted from

additional co-option events involving genes important for

embryonic inversion, asymmetric cell division, somatic and

germ cell differentiation and the structure and function of the

extracellular matrix. Because of their relatively low but variable

levels of morphological and developmental complexity, simple

underlying genetics and recent evolutionary history, the

volvocine algae are providing significant insight into our

understanding of the genetics and evolution of major

developmental and morphological traits.
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Introduction
Multicellularity evolved independently at least twenty-five

times, in both prokaryotic and eukaryotic clades [1,2,3��,4],

suggesting it is a common adaptation in response to various

ecological pressures such as predation, nutrient limitation
www.sciencedirect.com 
or changing environments (reviewed in [3��,4,5]). The

transition to simple multicellular life opened up unprece-

dented opportunities for the evolution of complex bodies

with specialized cells and novel developmental plans. Most

multicellular organisms, including plants and animals, de-

velop from a single progenitor cell, a process known as

clonal/unitary development (see [3��,6] for alternative de-

velopmental modes). Despite being one of the few major

evolutionary transitions that shaped Life on Earth

[3��,7��,8], the genetic basis for the evolution of multicel-

lularity has been elusive, partly because extant lineages

and their genomes have changed significantly since diverg-

ing from their unicellular ancestors [9�,10�,11,12].

Generally, the evolution of new traits relies on two major

processes: de novo gene evolution and co-option of existing

genes for new functions [13,14�,15]. The former is less

understood, however, with more genomes being sequenced

and more advanced computational approaches becoming

available the role of de novo genes to the evolutionary

process is being re-assessed [13,14�,16]. Gene co-option

can involve single-copy or duplicated genes. Both structural

(i.e., coding for RNAs or proteins other than regulatory

factors) and regulatory genes can be co-opted via changes in

either their coding or regulatory sequences, or both

[13,14�,17�]. Co-option can also involve a change in the

binding spectrum of an existing protein by the virtue of a

fortuitous interaction with a newly evolved protein, a pro-

cess referred to as ‘molecular exploitation’ [18]. Co-option

of existing genes has been often invoked to underlie

the evolution of numerous adaptive traits, including those

associated with the multicellular phenotype [13,14�,
17�,19�]. However, the relative significance of the postulat-

ed co-option mechanisms remains a matter of debate, with

changes in gene regulation often considered the primary

contributors to morphological evolution [19�,20�,21�,22]. As

genomics is transforming our understanding of the genetic

basis of many processes, the mechanisms and sequence of

events involved in the evolution of multicellular and de-

velopmental complexity are starting to become clear in

several major multicellular lineages. Here we focus on

recent advances in our understanding of multicellular evo-

lution using the volvocine green algae as a model system,

and argue that co-option of both regulatory and structural

genes involving changes in regulatory as well as coding

sequences played a major role in the evolution of morpho-

logical and developmental complexity in this group.

The volvocine algae, in the order Volvocales, include a

series of species with morphologies ranging from unicellular
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forms such as in Chlamydomonas, to multicellular groups of

undifferentiated cells (e.g. Gonium and Eudorina), and to

complex multicellular individuals with one (e.g. Pleodorina;

somatic cells), or two (Volvox; somatic and germ cells)

specialized cell types (Figure 1). The Volvocales are an

experimentally tractable model-system for understanding

the mechanistic basis for the evolution of multicellular

complexity for several reasons [5]. Multicellularity in the

Volvocales occurred more recently, �200 Mya [23��], than

in other multicellular lineages; for instance, in the animal

and land plant lineages multicellularity evolved �0.65–
1 Bya [9�,10�,24–26]. The genomes of 3 volvocine spe-

cies — Chlamydomonas reinhardtii, Gonium pectorale, and

Volvox carteri — have been sequenced [27��,28��,29], and

although these species span the range of complexity from

unicellular to multicellular forms with simple or complex
Figure 1

Morphological or
Developmental Traits

Co-opted
genes

Unicellular
Multiple fission

Undifferentiated multicellular
Multiple fission

Undifferentiated multicellular 
Multiple fission
Expanded ECM

Embryo inversion

Differentiated multicellular
Two specialized cell types:

Soma and germ
Multiple fission
Expanded ECM

Embryo inversion
Asymmetric cell division

RB
CYCD1

Unknown

Differentiated multicellular
One specialized cell type:

Soma
Multiple fission
Expanded ECM

Embryo inversion

invA
glsA

PHERs
MMPs
VARLs
regA

Unknown

Evolution of multicellular and developmental complexity in the Volvocales. R

single-celled individuals (Chlamydomonas) to complex multicellular organism

opted for novel morphological and developmental traits in this group have b

evolutionary history (see Table 1 for more information).
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developmental programs, their genomes appear overall

similar, with some of the differences likely to have contrib-

uted to the evolution of multicellular complexity in this

group. Indeed, both genomics and genetics have revealed

that the genetic basis for major leaps in developmental and

morphological complexity in the Volvocales is rather simple

[30–40]. Genetic tools are also available to tease apart the

contributions of the various postulated genetic mechanisms

underlying the evolution of morphological innovations

[41–45]. Furthermore, genetics screens have been a power-

ful tool in advancing our understanding of developmental

pathways in V. carteri, where a number of mutants have

revealed genes involved in important developmental and

morphological traits [30–33,40,46,47]. Lastly, while the

transition to multicellular undifferentiated forms occurred

only once, several traits associated with organismal size
Chlamydomonas reinhardtii

Gonium pectorale

Volvox
carteri 

Pleodorina star

Eudorina elegans

50 µm

0.1 mm

0.1 mm

10 µm

0.1 mm
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epresentative volvocine species with distinct levels of complexity, from

s with two specialized cell types (Volvox). Genes that have been co-

een mapped according to the current understanding of their
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expansion and developmental programs have been repeat-

edly gained and lost in this group [12,23��,41,48,49,50�,51],

opening up the possibility to address the genetic basis of

morphological convergence.

Co-option of cell cycle regulation during the
evolution of undifferentiated multicellularity in
volvocine algae
In metazoans and plants, the regulation of the cell cycle

involves a group of retinoblastoma-related proteins; these

are transcriptional regulators that repress and activate cell

cycle regulated genes through binding to, and directly

affecting the activity of E2F-DP transcription factors [62].

When hypo-phosphorylated, RB proteins repress the cell

cycle, but when hyper-phosphorylated, primarily by cy-

clin-CDK dimers, RB becomes inactivated, thereby de-

repressing and activating S phase-related transcription

driving the cell into mitosis [62].

A recurring theme of multicellular evolution in the Vol-

vocales involves modifications to their cell cycle program

[5,12,41,50�] (Figure 2). Our understanding of the volvo-

calean cell cycle is primarily derived from work in C.
reinhardtii. In this species, each single-celled individual

follows a multiple fission cell cycle, where cells grow 2n in

size, followed by n alternating rounds of divisions. The

cycle becomes highly synchronized with the diurnal light-

dark cycle, resulting in a prolonged G1 period during light

and a series of S-phase and mitosis (S/M) in the dark, to

produce a uniform population of unicellular daughter cells

(Figure 2) [52–57]. Interestingly, in C. reinhardtii, the

number of alternating rounds of S/M phase is determined

by the mother cell size, which regulates the activity of the

Chlamydomonas retinoblastoma protein, RB (encoded by

the MAT3 gene), and determines the number of rounds of

cell division after cells have reached a minimum size to

divide at least once [52,53,55,56,58] (Figure 2).

Multiple fission has been co-opted for multicellularity in

the Volvocales. While in unicellular Chlamydomonas indi-

vidual daughters break apart from division clusters, in

undifferentiated multicellular species such as Gonium
failure to separate at the end of the process results in

multicellular daughter colonies (Figure 2). In V. carteri
(Figure 1) and its close relatives, clusters of undifferenti-

ated cells ultimately undergo a series of asymmetric cell

divisions resulting in the establishment of the germ and

somatic cell lines [5,33,41,51,59–61]. Because RB is a key

regulator of multiple fission and of the number of division

cycles [52–54,56], it is likely that this gene has been

important during the evolution of multicellularity in

the volvocine lineage (Figure 2).

In contrast to most plants and metazoans, which have

multiple isoforms of RB, E2F and DP with unique and

overlapping roles [62–65], C. reinhardtii, G. pectorale and

V. carteri have single copies of RB, E2F and DP. However,
www.sciencedirect.com 
the RB cell cycle regulatory pathway differs between the

unicellular and multicellular volvocine algae [27��,66�].
The RB gene itself is regulated by dimers of two proteins,

a cyclin and a cyclin-dependent kinase (CDK), which act

as dimers to phosphorylate RB. Cyclin D plays a critical

role in regulating the transition from G1 to S phase

(Figure 2). Interestingly, C. reinhardtii has a single cyclin

D1 gene, while G. pectorale and V. carteri each have an

expanded repertoire of cyclin D1 genes [27��,28��]. Simi-

larly, the linker domain of the RB protein — where

cyclin-CDK dimers phosphorylate RB [52,66�], is differ-

ent between the unicellular Chlamydomonas and the mul-

ticellular Gonium and Volvox [27��]. Interestingly, RB

genes in the Volvocales are also tightly linked to their

mating type loci, likely because they have secondary roles

in regulating the sex cycle [41,66�,67�,68]. Because the

RB pathway regulates the transcription of cell cycle

related genes, it is likely that the transcriptional output

of the RB pathway has been co-opted for a role in

multicellularity, and subsequently for cell differentiation,

and sexual development [27��].

Recently, this hypothesis has been directly tested by

expressing the RB gene from G. pectorale in C. reinhardtii
cells lacking the RB gene [27��]. Surprisingly, Chlamydo-
monas cells complemented with the Gonium RB gene

exhibited a multicellular phenotype. When these lines

were crossed to mutants lacking a functional E2F-DP

transcription factor, this phenotype was suppressed

[27��]. These data support the hypothesis that RB-de-

pendent regulation of existing cell adhesion genes pres-

ent in the unicellular ancestor was important for

multicellular evolution in this group. Because RB pro-

teins are central to cell cycle regulation and development

in many eukaryotes [69–75], this finding has significant

implications for our understanding of the evolution of

multicellularity in other eukaryotic taxa as well.

Co-option of environmentally induced stress
responses for somatic cell differentiation in V.
carteri
Generally, the evolution of germ-soma separation during

the transition to multicellularity requires a change in the

expression of vegetative and reproductive functions from

a temporal pattern into a spatial context — resulting in

these functions being differentially expressed between

somatic and germ cells [76]. Mechanistically, it has been

suggested that the evolution of soma involved the co-

option of life-history genes that in unicellular lineages

were induced by environmental cues as an adaptive

strategy to enhance survival at an immediate cost to

reproduction, by shifting their expression from an en-

vironmentally induced context into a developmental con-

text [76,77].

In V. carteri, the segregation between the somatic and germ

cell lines takes place early during embryonic development
Current Opinion in Genetics & Development 2016, 39:107–115
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Figure 2
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Comparison between the cell cycles of the unicellular Chlamydomonas and the multicellular Gonium. (a) Growth and cell division in

Chlamydomonas are coupled such that after an extended G1 phase in the light, they divide by multiple-fission in the dark. Chromatin bound RB-

E2F-DP complexes transcriptionally regulate the multiple-fission cell cycle. During G1 phase, RB is hypo-phosphorylated and binds to, and inhibits

transcription by, E2F-DP. During mitosis, cyclin D1 dimerized with a CDK hyper-phosphorylates RB, causing a conformational change in the

chromatin bound complex, leading to the transcription of genes required for mitosis. After mitosis, RB becomes hypo-phosphorylated and cell

cycle related genes are no longer transcribed, causing mitotic exit. (b) Gonium divides by multiple fission as well. RB also regulates the Gonium

cell cycle except that during G1 phase the several cyclin D1 genes and their CDK partner phosphorylate RB at loci different than in

Chlamydomonas, regulating genes required for cell–cell adhesion during G1 phase. During mitosis, cyclin D1 family genes with their CDK partner

activate the cell cycle just as in Chlamydomonas; however, after mitosis, genes required for G1 phase cell–cell adhesion are up-regulated just

before mitosis ends, keeping post-mitotic cells attached to each other and leading to the production of multicellular daughter colonies.
and involves a series of asymmetric cell divisions limited to

one hemisphere of the embryo. Differences in cell size, not

cytoplasmic composition, are thought to be solely respon-

sible for the early establishment of distinct cell fates in this

species [59]. Somatic cell specialization involves the dif-

ferential expression of a master regulatory gene — known

as regA, thought to encode a transcriptional repressor;

mutations in this gene alone result in somatic cells regain-

ing reproductive capabilities [47,78]. The proposed DNA
Current Opinion in Genetics & Development 2016, 39:107–115 
binding domain of RegA is a SAND domain that is also

found in other transcription factors such as ULTRAPE-

TALA in Arabidopsis thaliana and SP100 in humans, where

they are involved in regulating cell proliferation and dif-

ferentiation [79,80]. RegA is only induced in cells whose

size falls below a threshold size at the end of embryogene-

sis; the mechanism is unknown, but likely involves cis-
regulatory elements identified in three of its intronic

sequences [34,59]. RegA is thought to act by repressing
www.sciencedirect.com
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the expression of nuclear-encoded chloroplast proteins

[81], which affects the ability of these small cells to

photosynthesize, and ultimately to grow and divide.

RegA belongs to a large and diverse gene family known as

the VARL gene family with members in both unicellular

and multicellular volvocine species [77,82,83��,84��]. In-

terestingly, orthologs of regA have been identified in

several distant Volvox species that evolved somatic cell

differentiation independently suggesting that regA origi-

nated before the evolution of somatic cell differentiation,

although whether regA is involved in somatic cell differ-

entiation in these Volvox species is not known [82,84��].
However, a direct ortholog of regA has not been found in

either C. reinhardtii or G. pectorale genomes [27��,84��].
The closest homolog of regA in C. reinhardtii is known as

RLS1 and its expression is induced under nutrient limi-

tation (including phosphorus-deprivation and sulfur-dep-

rivation), light deprivation and during stationary phase

[77,85]. On the basis of these findings we proposed a

hypothesis for the evolution of somatic cells in V. carteri
involving the co-option of an ancestral environmentally

induced RLS1-like gene, by switching its regulation from

a temporal/environmental into a spatial/developmental

context [77,85].

Three potential scenarios, each with distinct predictions,

can be envisioned for such a change in regulation

(Figure 3) [86]. In the first scenario, no new regulatory
Figure 3

regA-likeRE1

Signal 1

Environmental Cue E

E

Three potential scenarios for the co-option of an ancestral, environmentally 

leading to V. carteri. (a) No new regulatory elements (RE) evolved; both env

ancestral regulatory element (RE1). (b) An additional layer of regulation (RE2

pathway. (c) The ancestral regulation was replaced or lost and new regulato
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elements evolved; rather, the same ancestral environmen-

tally induced signaling pathway was also induced during

development in early multicellular volvocine algae with

somatic cells (that is, the developmental signal simulated

the environmental signal) (Figure 3a) [85]. This scenario

would predict that regA in V. carteri is induced both

environmentally and developmentally via the same sig-

naling pathway (Figure 3a). A second scenario requires

that an additional layer of regulation evolved as part of a

new, developmentally induced signaling pathway, and

both mechanisms have been maintained in V. carteri. This

would predict that regA is induced both environmentally

and developmentally, but the signaling pathways are

different (Figure 3b). The third scenario assumes that

the ancestral regulation of regA was replaced or lost and

new regulatory elements evolved in V. carteri (Figure 3c).

Notably, the former two scenarios predict that regA can

still be induced in an environmental context. Indeed, regA
is now known to be expressed outside its developmental

context, in response to environmental stresses such as

light following extended darkness [87]. This suggests that

regA maintained some of is putative ancestral environ-

mental regulation. However, the current data cannot

distinguish between the first two scenarios presented

above (Figure 3).

Understanding how an environmentally induced RLS1-

like gene was co-opted into a regulator of cell differentia-

tion will provide new insights into the evolution of novel
Signal 1

regARE1

nvironmental Cue Developmental Cue

nvironmental Cue Developmental Cue

Signal 1

regARE1 RE2

Signal 2

Developmental Cue

regARE2

Signal 2

(a)

(c)

(b)

Current Opinion in Genetics & Development

induced regA-like gene during the evolution of regA in the lineage

ironmental and developmental cues converge on the same signal and

) evolved as part of a new (developmentally induced) signaling

ry elements (RE2) evolved.
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Table 1

Summary of our current understanding of the genes involved in major morphological and developmental traits in volvocine algae and the

potential genetic mechanisms underlying their evolution. For gene abbreviations see text

Species Multicellularity ECM Complete inversion Asymmetric division Somatic cells

Presence Genes Presence Genes Presence Genes Presence Gene Presence Genes

RB CYCD1 PHERs MMPs invA, B, C glsA VARLs regA

Chlamydomonas

reinhardtii

N 1 1 N 31 44 N 1 N 1 N 12 0

Gonium

pectorale

Y 1 4 N 35 36 N 1 N 1 N 8 0

Volvox carteri Y 1 4 Y 78 98 Y 1 Y 1 Y 14 1

Co-opted gene Single

copy

Duplicated Duplicated Single

copies

Single

copy

Duplicate

Likely change

underlying the

co-option event

Coding Regulatory

or binding

partner

Coding and

regulatory

Regulatory

or in

binding

partners

Regulatory

or in

binding

partners

Regulatory
morphological traits. In addition, understanding how a

pathway involved in responses to environmental changes

has been co-opted into a developmental program will

contribute to the growing interest in re-evaluating the

role of environment in developmental evolution [88].

Co-option of structural genes for
developmental complexity in the Volvocales
The two major leaps in organismal complexity discussed

thus far, multicellularity and somatic cell differentiation,

involved the co-option of transcriptional regulators, all of

which are likely to impact the expression of many down-

stream genes. However, structural genes whose products

are known to be involved in specific developmental and

morphological traits in V. carteri have also been co-opted

from single-celled ancestors. For example, four of the

genes underlying two V. carteri specific developmental

processes, asymmetric division and embryonic inversion,

have orthologs in C. reinhardtii and G. pectorale (Table 1).

Remarkably, V. carteri mutants in two of these genes, invA
coding for a kinesin [40], and glsA coding for a co-chaper-

one involved in spindle placement [33,60,89] can be

complemented by their C. reinhardtii orthologs [40,90],

suggesting that these genes have been directly co-opted

into developmental processes by either changes in their

regulation (involving cis or trans elements) or changes in

their protein interacting partners. Other structural genes

involved in multicellular traits in the volvocine algae

appear to have evolved by gene duplication followed

by diversification; these include the genes coding for

matrix metalloproteases (MMPs) and a class of hydroxy-

proline-rich glycoproteins called pherophorins (PHERs),

all involved in the structure and function of the extracel-

lular matrix (ECM) [27��,28��,91–96] (Table 1). Interest-

ingly, although C. reinhardtii and G. pectorale have roughly

the same total number of these ECM related genes

(Table 1; though not all are direct orthologs to each

other), V. carteri has significantly more ECM related genes
Current Opinion in Genetics & Development 2016, 39:107–115 
than Chlamydomonas (Table 1; [41,91]), consistent with an

increased amount of ECM in this species [27��].

Conclusions and perspective
The volvocine algae are reaping significant advances in

our understanding of the genetic mechanisms underlying

the evolution of multicellularity and developmental com-

plexity. Several key traits associated with the evolution of

multicellularity and developmental complexity in this

group involved co-option events (Table 1). First, the cell

cycle was reprogrammed via co-option of RB and cyclin

D1 genes to promote the evolution of undifferentiated

multicellularity by modifications to the multiple fission

division pattern as observed in the extant Gonium
(Figure 2 and Table 1). Interestingly, the ancestral mul-

tiple fission type of division has been further modified in

distinct Volvox lineages, contributing to the four develop-

mental programs known in this group [97]. In the lineage

leading to V. carteri, a series of additional co-option events

took place, including co-option of genes involved in the

structure and function of ECM, embryonic inversion,

asymmetric cell division, and establishing the somatic

cell fate (Figure 1 and Table 1). Of particular interest is

the co-option of regA in the differentiation of soma.

Because soma evolved independently in several volvo-

cine lineages [23��,41,48,97], including species whose

developmental programs do not involve asymmetric divi-

sions and multiple fission, further sequencing of volvo-

calean genomes and genetic analyses should reveal

whether somatic cell evolution involved similar or distinct

genetic mechanisms in this group.

The Volvocales are emerging as an important model-

system in which to address the contribution of the many

postulated types of genetic mechanisms contributing to

the evolution of multicellularity and developmental com-

plexity (Figure 1 and Table 1). Indeed, some co-option

events involved changes in the regulation of genes (e.g.,

regA, CYCD1) while others involved changes to coding
www.sciencedirect.com
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sequences (e.g., RB) or possibly the binding potential of

the encoded proteins (e.g., glsA, invA). Likewise, the co-

option events included both single-copy genes (inv, glsA)

as well as multi-copy genes (VARLs, PHERs, MMPs); and

both regulatory (regA, RB, CYCD1) and structural (invA,

glsA, PHER, MMP) genes. Because of their relatively low

but variable levels of complexity as well as simple under-

lying genetics and recent evolutionary history, the volvo-

cine algae are living up to their potential by providing

significant insight into our understanding of the genetics

of adaptations and evolution of complex developmental

and morphological traits.
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