Title: Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvoceae, Chlorophyceae)

Author(s): Nozaki H (Nozaki, Hisayoshi), Ott FD (Ott, Franklyn D.), Coleman AW (Coleman, Annette W.)

Source: JOURNAL OF PHYCOLOGY 42 (5): 1072-1080 OCT 2006

 

Abstract: The volvocacean genus Pleodorina has been morphologically characterized as having small somatic cells in spheroidal colonies and anisogamous sexual reproduction with sperm packets. In this study we examined two new species that can be assigned to the genus Pleodorina based on morphology: P. starrii H. Nozaki et al. sp. nov. and P. thompsonii F. D. Ott et al. sp. nov. P. starrii was collected from Japan and had 32- or 64-celled colonies with anterior somatic cells and spheroidal individual cellular sheaths that were weakly attached to each other within the colonial envelope. P. thompsonii from Texas (USA) exhibited four or 12 somatic cells in the anterior pole of 16- or 32-celled colonies, respectively, and had a single large pyrenoid in the chloroplast of mature reproductive cells. The chloroplast multigene phylogeny placed P. starrii and P. indica (Iyenger) H. Nozaki in a clade that was robustly separated from the type species P. californica Shaw and P. japonica H. Nozaki. Pleodorina thompsonii was resolved as a basal branch within a large monophyletic group (Eudorina group) composed of Eudorina, Pleodorina and Volvox (excluding section Volvox). Thus, Pleodorina was found among three separate lineages within the Eudorina group in which Eudorina and Volvox were also resolved as nonmonophyletic. The DNA sequences from additional species/strains as well as recognition of morphological attributes that characterize the monophyletic groups within the Eudorina group are needed to construct a natural generic classification within these members of the Volvocaceae.

 

Title: Morphogenesis in the family Volvocaceae: Different tactics for turning an embryo right-side out

Author(s): Hallmann A (Hallmann, Armin)

Source: PROTIST 157 (4): 445-461 OCT 2006

 

Abstract: Green algae of the family Volvocaceae provide an unrivalled opportunity to analyze an evolutionary pathway leading from unicellularity to multicellularity with division of labor. One key step required for achieving multicellularity in this group was the development of a process for turning an embryo inside out: a morphogenetic process that is now known as "inversion," and that is a diagnostic feature of the group. Inversion is essential because at the end of its embryonic cleavage divisions, each volvocacean embryo contains all of the cells that will be present in an adult, but the flagellar ends of all cells are pointed toward the interior, rather than toward the exterior where they will need to be to function in locomotion. Inversion has been studied in greatest detail in Volvox carteri, but although all other volvocacean species have to struggle with the same awkward situation of being wrong-side out at the end of cleavage, they do it in rather different ways. Here, the inversion processes of six different volvocacean species (Gonium pectorale, Pandorina morum, Eudorina unicocca, Volvox carteri, Volvox tertius, and Volvox globator) are compared, in order to illustrate the variation in inversion patterns that exists within this family. The simplest inversion process occurs in the plate-shaped alga Gonium pectorale, and the most complicated in the spherical alga Volvox globator Gonium pectorale goes only from a concave-bowl shape to a slightly convex plate. In Volvox globator, the posterior hemisphere inverts completely before the anterior pole opens and the anterior hemisphere slides over the already-inverted posterior hemisphere; during both halves of this inversion process, the regions of maximum cell-sheet curvature move progressively, as radially symmetrical waves, along the posterior-anterior axis.