2005

 

Yoshida H, Yokomori T, Suyama A. A simple classification of the volvocine algae by formal languages.

BULLETIN OF MATHEMATICAL BIOLOGY 67 (6): 1339-1354 NOV 2005

Abstract: There are several explanations of why certain primitive multicellular organisms aggregate in particular forms and why their constituent cells cooperate with one another to a particular degree. Utilizing the framework of formal language theory, we have derived one possible simple classification of the volvocine algae-one of the primitive multicells-for some forms of aggregation and some degrees of cooperation among cells. The volvocine algae range from the unicellular Chlamydonionas to the multicellular Volvox globator, which has thousands of cells. The classification we use in this paper is based on the complexity of Parikh sets of families on Chomsky hierarchy in formal language theory. We show that an alga with almost no space closed to the environment, e.g., Gonium pectorale, can be characterized by PsFIN, one with a closed space and no cooperation, e.g., Eudorina elegans, by PsCF, and one with a closed space and cooperation, e.g., Volvox globator, by Ps lambda SC. This classification should provide new insights into the necessity for specific forms and degrees of cooperation in the volvocine algae. (c) 2005 Society for Mathematical Biology.
 

Cheng Q, Pappas V, Hallmann A, et al. Hsp70A and GlsA interact as partner chaperones to regulate asymmetric division in Volvox. DEVELOPMENTAL BIOLOGY 286 (2): 537-548 OCT 15 2005

Abstract: GlsA, a J-protein chaperone, is required for the asymmetric divisions that set aside germ and somatic cell precursors during embryogenesis in Volox carteri, and previous evidence indicated that this function requires an intact Hsp70-binding site. To determine if Hsp70A, the only known cytoplasmic Hsp70 in V. carteri, is the chaperone partner of GlsA, we investigated the localization of the two proteins during critical stages of embryogenesis and tested their capacity to interact. We found that a substantial fraction of Hsp70A co-localizes with GlsA, both in interphase and mitotic blastomeres. In addition, Hsp70A coimmunoprecipitated with GlsA, and co-expression of GlsA and Hsp70A variants partially rescued the Gls phenotype of a glsA mutant, whereas neither variant by itself rescued the mutant phenotype. Immunofluorescence analysis demonstrated that GlsA is about equally abundant in all blastomeres at all cleavage stages examined but that Hsp70A is more abundant in anterior (asymmetrically dividing) blastomeres than in posterior (symmetrically dividing) blastomeres during the period of asymmetric division. We conclude that Hsp70A and GlsA function as chaperone partners that regulate asymmetric division and that the relative abundance of Hsp70A in asymmetrically dividing embryos may determine which blastomeres divide asymmetrically and which do not.

 

Aono N, Inoue T, Shiraishi H. Genes specifically expressed in sexually differentiated female spheroids of Volvox carteri.

JOURNAL OF BIOCHEMISTRY 138 (4): 375-382 OCT 2005

Abstract: Volvox carteri is a multicellular green alga with only two cell types, somatic cells and reproductive cells. Phylogenetic analysis suggests that this organism has evolved from a Chlamydomonas-like unicellular ancestor along with multicellularity, cellular differentiation, and a change in the mode of sexual reproduction from isogamy to oogamy. To examine the mechanism of sexual differentiation and the evolution of oogamy, we isolated 6 different cDNA sequences specifically expressed in sexually differentiated female spheroids. The genes for the cDNAs were designated SEF1 to SEF6. The time course of accumulation of each mRNA was shown to be distinct. The expression of some of these genes was not significantly affected when the sexual inducer was removed after the induction of sexual development. Sequence analysis indicates that SEF5 and SEF6 encode pherophorin-related proteins. Of these, SEF5 has the unique structural feature of a polyproline stretch in the C-terminal domain in addition to the one found in the central region.


  
 Wadhwa V, Kumar S, Rai S, et al. A 'pseudo outbreak' of the contamination of blood cultures with Volvox globator.

ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 99 (7): 719-720 OCT 2005